Supplementary Materials for # Incommensurate spin correlations in highly oxidized cobaltates La_{2-x}Sr_xCoO₄ Z. W. Li¹, Y. Drees ¹, C. Y. Kuo¹, H. Guo¹, A. Ricci², D. Lamago^{3,4}, O. Sobolev^{5,6}, U. Rütt 2, O. Gutowski², T. W. Pi⁷, A. Piovano⁸, W. Schmidt^{8,9}, K. Mogare¹, Z. Hu¹, L. H. Tjeng¹, and A. C. Komarek^{1,*} ¹ Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany ² Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg, Germany ³ Forschungszentrum Karlsruhe, Institut für Festkörperphysik, P.O.B. 3640, D-76021 Karlsruhe, Germany ⁴ Laboratoire Léon Brillouin, CEA/CNRS,F-91191 Gif-sur Yvette Cedex, France ⁵ Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II), TU München, Lichtenbergstr. 1, D-85747 Garching, Germany ⁶ Georg-August-Universität Göttingen, Institut für Physikalische Chemie, Tammannstrasse 6, D-37077 Göttingen, Germany ⁷ National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30077, Taiwan ⁸ Institut Laue-Langewin (ILL), 71 avenue des Martyrs, F-38042 Grenoble Cedex 9, France ⁹ Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at ILL, 71 avenue des Martyrs, F-38042 Grenoble Cedex 9, France ^{*} Alexander.Komarek@cpfs.mpg.de **Fig. S1** The Co-L_{2,3} XAS spectrum of La_{1.2}Sr_{0.8}CoO₄ is shown together with XAS spectra of CoO, NdCaCoO₄ and Sr₂Co_{1/2}lr_{1/2}O₄ reference samples. The pre-peak at 778 eV can be attributed to the presence of a Co²⁺ species. The experimental Co-L_{2,3} spectrum of La_{1.2}Sr_{0.8}CoO₄ can be decomposed into 77% Co³⁺ content, denoted as 'difference' (black circles) and 23% Co²⁺ contribution (cyan line). These measurements show that our La_{1.2}Sr_{0.8}CoO_{4+δ} sample has only a tiny oxygen deficiency (δ=-0.015±0.005). After subtraction of the Co²⁺ contribution (denoted as 'difference'), we were able to estimated the HS content for the Co³⁺ species. Therefore, we used NdCaCoO₄ and Sr₂Co_{0.5}Ir_{0.5}O₄ [S1,S2] as a Co³⁺ LS and Co³⁺ HS reference material, respectively. The lower part of this figure shows that the difference spectrum can be nicely reproduced by the weighted sum (magenta) of the Co³⁺ HS spectrum (green line) and the Co³⁺ LS spectrum (blue line). Thus, the presence of ~19% Co³⁺ ions in the HS state and ~58% Co³⁺ ions in the LS state is revealed by this modelling of the 'difference' spectrum (besides 23% Co²⁺ ions). #### References [S1] X. Ou and Hua Wu, Phys. Rev. B 89, 035138 (2014) [S2] unpulished results **Fig. S2** Fourrier transformation of charge ordering pattern used for numerical simulations in Fig. 6 (a). The expected intensity for charge correlations is shown in a logarithmic colourcontour plot. Since only the modulations of the Co-oxygen bond distances can be seen with neutrons and not the charges itself, the values are arbitrary. ## Supplementary Video Legends #### Supplementary Video #1: Low energy magnetic excitations The movie shows a simulation of spin excitations at $^{\sim}1.3$ meV within our nano phase separation model for La_{1.3}Sr_{0.7}CoO₄. ### Supplementary Video #2: Higher energy magnetic excitations The movie shows a simulation of spin excitations at $^{\sim}8.4$ meV within our nano phase separation model for La_{1.3}Sr_{0.7}CoO₄.